499 research outputs found

    Testing the Disk Regulation Paradigm with Spitzer Observations. II. A Clear Signature of Star-Disk Interaction in NGC 2264 and the Orion Nebula Cluster

    Full text link
    Observations of PMS star rotation periods reveal slow rotators in young clusters of various ages, indicating that angular momentum is somehow removed from these rotating masses. The mechanism by which spin-up is regulated as young stars contract has been one of the longest-standing problems in star formation. Attempts to observationally confirm the prevailing theory that magnetic interaction between the star and its circumstellar disk regulates these rotation periods have produced mixed results. In this paper, we use the unprecedented disk identification capability of the Spitzer Space Telescope to test the star-disk interaction paradigm in two young clusters, NGC 2264 and the Orion Nebula Cluster (ONC). We show that once mass effects and sensitivity biases are removed, a clear increase in the disk fraction with period can be observed in both clusters across the entire period range populated by cluster members. We also show that the long-period peak (P \sim8 days) of the bimodal distribution observed for high-mass stars in the ONC is dominated by a population of stars possessing a disk, while the short-period peak (P \sim2 days) is dominated by a population of stars without a disk. Our results represent the strongest evidence to date that star-disk interaction regulates the angular momentum of these young stars. This study will make possible quantitative comparisons between the observed period distributions of stars with and without a disk and numerical models of the angular momentum evolution of young stars.Comment: 31 pages, 7 figures, 2 tables. Accepted for publication in Ap

    Pair of Heavy-Exotic-Quarks at LHC

    Get PDF
    We study the production and signatures of heavy exotic quarks pairs at LHC in the framework of the vector singlet model (VSM), vector doublet model (VDM) and fermion-mirror-fermion (FMF) model. The pair production cross sections for the electroweak and strong sector are computed.Comment: 7 pages, 6 figures. accept at Int. Jour. of Mod. Phy

    The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori

    Get PDF
    We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) observations of V883 Ori, an FU Ori object. We describe the molecular outflow and envelope of the system based on the 12^{12}CO and 13^{13}CO emissions, which together trace a bipolar molecular outflow. The C18^{18}O emission traces the rotational motion of the circumstellar disk. From the 12^{12}CO blue-shifted emission, we estimate a wide opening angle of \sim 150^{^{\circ}} for the outflow cavities. Also, we find that the outflow is very slow (characteristic velocity of only 0.65 km~s1^{-1}), which is unique for an FU Ori object. We calculate the kinematic properties of the outflow in the standard manner using the 12^{12}CO and 13^{13}CO emissions. In addition, we present a P Cygni profile observed in the high-resolution optical spectrum, evidence of a wind driven by the accretion and being the cause for the particular morphology of the outflows. We discuss the implications of our findings and the rise of these slow outflows during and/or after the formation of a rotationally supported disk.Comment: 12 pages, 7 figures, 2 tables. Accepte

    HD 169142 in the eyes of ZIMPOL/SPHERE

    Get PDF
    We present new data of the protoplanetary disc surrounding the Herbig Ae/Be star HD 169142 obtained in the very broad-band (VBB) with the Zurich imaging polarimeter (ZIMPOL), a sub-system of the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) at the Very Large Telescope (VLT). Our Polarimetric Differential Imaging (PDI) observations probe the disc as close as 0.03" (3.5au) to the star and are able to trace the disc out to ~1.08" (~126au). We find an inner hole, a bright ring bearing substructures around 0.18" (21au), and an elliptically shaped gap stretching from 0.25" to 0.47" (29-55au). Outside of 0.47", the surface brightness drops off, discontinued only by a narrow annular brightness minimum at ~0.63"-0.74" (74-87au). These observations confirm features found in less-well resolved data as well as reveal yet undetected indications for planet-disc interactions, such as small-scale structures, star-disk offsets, and potentially moving shadows.Comment: Accepted for publication in MNRA

    A census of ρ\rho Oph candidate members from Gaia DR2

    Full text link
    The Ophiuchus cloud complex is one of the best laboratories to study the earlier stages of the stellar and protoplanetary disc evolution. The wealth of accurate astrometric measurements contained in the Gaia Data Release 2 can be used to update the census of Ophiuchus member candidates. We seek to find potential new members of Ophiuchus and identify those surrounded by a circumstellar disc. We constructed a control sample composed of 188 bona fide Ophiuchus members. Using this sample as a reference we applied three different density-based machine learning clustering algorithms (DBSCAN, OPTICS, and HDBSCAN) to a sample drawn from the Gaia catalogue centred on the Ophiuchus cloud. The clustering analysis was applied in the five astrometric dimensions defined by the three-dimensional Cartesian space and the proper motions in right ascension and declination. The three clustering algorithms systematically identify a similar set of candidate members in a main cluster with astrometric properties consistent with those of the control sample. The increased flexibility of the OPTICS and HDBSCAN algorithms enable these methods to identify a secondary cluster. We constructed a common sample containing 391 member candidates including 166 new objects, which have not yet been discussed in the literature. By combining the Gaia data with 2MASS and WISE photometry, we built the spectral energy distributions from 0.5 to 22\microm for a subset of 48 objects and found a total of 41 discs, including 11 Class II and 1 Class III new discs. Density-based clustering algorithms are a promising tool to identify candidate members of star forming regions in large astrometric databases. If confirmed, the candidate members discussed in this work would represent an increment of roughly 40% of the current census of Ophiuchus.Comment: A&A, Accepted. Abridged abstrac

    Submillimeter Array Observations of the RX J1633.9-2442 Transition Disk: Evidence for Multiple Planets in the Making

    Full text link
    We present continuum high resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 micron) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3" (35 AU at the distance of the target). We find that the disk is highly inclined (i ~50 deg) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution (SED) and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 micron. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk (r < 5 AU) is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K-band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.Comment: Accepted for publication in Ap

    t-channel production of heavy charged leptons

    Get PDF
    We study the pair production of heavy charged exotic leptons at e+ e- colliders in the SU(2)_L x SU(2)_I x U(1)_Y model. This gauge group is a subgroup of the grand unification group E6; SU(2)_I commutes with the electric charge operator, and the three corresponding gauge bosons are electrically neutral. In addition to the standard photon and Z boson contributions, we also include the contributions from extra neutral gauge bosons. A t-channel contribution due to W_I-boson exchange, which is unsuppressed by mixing angles, is quite important. We calculate the left-right and forward-backward asymmetries, and discuss how to differentiate different models.Comment: Increased discussion of experimental signatures. Version accepted by PR

    The inner environment of Z~CMa: High-Contrast Imaging Polarimetry with NaCo

    Get PDF
    Context. Z\,CMa is a binary composed of an embedded Herbig Be and an FU Ori class star separated by 100\sim100 au. Observational evidence indicate a complex environment in which each star has a circumstellar disk and drives a jet, and the whole system is embedded in a large dusty envelope. Aims. We aim to probe the circumbinary environment of Z\,CMa in the inner 400 au in scattered light. Methods. We use high contrast imaging polarimetry with VLT/NaCo at HH and KsK_s bands. Results. The central binary is resolved in both bands. The polarized images show three bright and complex structures: a common dust envelope, a sharp extended feature previously reported in direct light, and an intriguing bright clump located 0\farcs3 south of the binary, which appears spatially connected to the sharp extended feature. Conclusions.We detect orbital motion when compared to previous observations, and report a new outburst driven by the Herbig star. Our observations reveal the complex inner environment of Z\,CMa with unprecedented detail and contrast.Comment: Accepted for publication in A&A Letter
    corecore